γ - versus δ -Hydrogen Abstraction in the Photochemistry of α -Alkyl β -Oxoamides

Tadashi Hasegawa,* Yoshiaki Arata, and Kouichi Mizuno

Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi, Koganeishi, Tokyo 184, Japan

The excited ketone carbonyl group in the α -alkyl β -oxoamide (1a—e) abstracts γ - and δ -hydrogen competitively from the n,π^* triplet state; the δ -hydrogen abstraction greatly predominates over the γ -hydrogen abstraction in the photolyses of (1c) and (1d).

Intramolecular hydrogen abstraction by oxygen atoms of carbonyl groups in excited states is a well known primary photochemical process of carbonyl compounds.¹ In general the most favourable intramolecular hydrogen abstraction involves a six-membered cyclic transition state in the hydrogen abstraction step because of the stereoelectronic requirement for the abstraction.2 Hydrogen abstraction involving a sevenmembered cyclic transition state takes place only when γ hydrogens are absent or δ -hydrogens are activated by substituents.3 We have previously reported that N,N-dialkyl β -oxoamides underwent photocyclization via δ -hydrogen abstraction to give pyrrolidin-2-ones in high yields.4 We report here the competing γ - and δ -hydrogen abstraction by ketone carbonyl groups in photolyses of the α -alkyl β -oxoamides (1a—d), and provide the first example of δ -hydrogen abstraction predominating greatly over γ-hydrogen abstraction.

When a methanol solution of N,N-dibenzyl-2-benzoyl-4-methylvaleramide (1a) was irradiated under nitrogen with light from a 450 W high-pressure mercury lamp through a Pyrex filter, the benzoylacetamide (2a) and the pyrrolidinone (3a) were obtained in 86 and 11% yield (Table 1), respectively. Similarly, irradiation of the β -oxoamide (1b) under the same conditions gave the acetamide (2a) and the pyrrolidinone (3b) in 71 and 28% yield, respectively. The ratio of the benzoylacetamide to the pyrrolidinone was quite different in photolyses of the α -ethyl- β -oxoamides (1c) and (1d). Irradiation of the β -oxoamide (1c) under the same conditions gave the benzoylacetamide (2a) and the pyrrolidin-2-one (3c) in 20 and 72% yield, respectively. Similarly, irradiation of the N,N-diethyl- β -oxoamide (1d) gave the benzoylacetamide (2b) and the pyrrolidinone (3d) in 27 and 66% yield, respectively.

Formation of the benzoylacetamide (2a) and (2b) and the pyrrolidin-2-one (3) can be rationalized in terms of Norrish Type II elimination and photocyclization via δ -hydrogen abstraction, respectively. The δ -hydrogen abstraction competed comparably with the stereoelectronically favoured γ -hydrogen abstraction in the photolyses of (1a) and (1b), and predominated greatly over γ -hydrogen abstraction for (1c) and (1d). These results indicate that the amide nitrogen in the

Ph
$$\stackrel{R^2}{\longrightarrow}$$
 $\stackrel{R^3}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{CH_2R^1}{\longrightarrow}$ $\stackrel{CH_2R^1}{\longrightarrow}$

Table 1. Irradiation of the β -oxoamides (1).

Compound R ¹ R ² R	% Yield 3 (2a) or (2b)	% Yield of (3)	δ: γ reactivity ratio
(1a) Ph Me M	e 86	11	0.13
(1b) Ph Me H	71	28	0.39
(1c) Ph H H	20	72	3.60
(1d) Me H H	27	66	2.44

 β -oxoamides effectively activates the δ -hydrogen atoms. Formation of both the benzoylacetamide and the pyrrolidinone from the β -oxoamide (1c) were efficiently quenched with penta-1,3-diene, indicating that the reactions proceed from the

 n,π^* triplet excited state of the β -oxoamide (1). Production of the pyrrolidinone (3) via δ -hydrogen abstraction may be considered to proceed from the charge-transfer state of the β -oxoamide (1). However, it is quite improbable that the rate of bimolecular quenching with penta-1,3-diene greatly surpasses the rate of intramolecular charge-transfer quenching.

Received, 27th January 1983; Com. 127

References

- 1 P. J. Wagner, Acc. Chem. Res., 1971, 4, 168.
- 2 N. J. Turro and D. S. Weiss, J. Am. Chem. Soc., 1968, 90, 2185.
- 3 P. J. Wagner, P. A. Kelso, A. E. Kemppainen, and R. G. Zepp, J. Am. Chem. Soc., 1972, 94, 7500; P. J. Wagner and R. G. Zepp, ibid., 1971, 93, 4958.
- 4 T. Hasegawa, H. Aoyama, and Y. Omote, J. Chem. Soc. Perkin Trans. 1, 1976, 2054; 1979, 963.